91 research outputs found

    The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features

    Get PDF
    BACKGROUND: Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. RESULTS: The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. CONCLUSION: Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans

    Phylogeny of "Sphecidae" (Hymenoptera: Apoidea) based on molecular data

    Get PDF
    Die Grabwespen (Sphecidae sensu Bohart & Menke 1976; Sphecidae sensu lato in neueren, phylogenetischen Arbeiten), zu denen nach Day (1984) und spĂ€teren Autoren auch die Heterogynaidae zĂ€hlen, umfassen derzeit 266 Gattungen mit 9559 beschriebene Arten (Pulawski 2006). Zusammen mit den Bienen (= Apiformes nach Michener 2000, bzw. Anthophila nach Engel 2005) bilden die Grabwespen ein gut begrĂŒndetes Monophylum, das nach Michener (1986) den Namen Apoidea trĂ€gt und eine der drei Hauptlinien innerhalb der aculeaten Hymenoptera ist. Die Monophylie der aculeaten Hymenoptera, der Apoidea sowie die der Bienen ist jeweils gut begrĂŒndet (z.B. Brothers 1975, Königsmann 1978, Lomholdt 1982, Alexander 1992, Brothers & Carpenter 1993). Anders verhĂ€lt es sich mit den Grabwespen. Neben der phylogenetischen Untersuchung von Brothers & (1993), die die Monophylie der Grabwespen unterstĂŒtzt, haben andere morphologische als auch molekularsystematische Analysen starken Zweifel an dieser Hypothese aufkommen lassen (z.B. Königsmann 1978, Lomholdt 1982, Alexander 1992, Prentice 1998, Melo 1999, Ohl & Bleidorn 2006).Sequences from the nuclear long-wavelength-rhodopsin and the mitochondrial cytochrom-c-oxidase (subunit I) from different representatives of the Apoidea, with special emphasis on digger wasps (Sphecidae sensu lat), were analysed using maximum parsimony, maximum likelihood and Baysian inference methods. Compared with previous phylogenetic studies based on morphology, the results of the molecular analyses are controversial but correspond in the absence of support for the Sphecidae s. l (sensu Bohart & Menke). The relationships within the Sphecidae sensu stricto correspond largely with recent morphological studies. There is circumstantial evidence that the Ampulicidae and Sphecidae s. str. together form a monophyletic group, whereas the relationships within this taxon are still uncertain. Although there is no evidence for a definitive phylogenetic position of the Heterogynaidae; it can be excluded that they are the sistertaxon to all other Apoidea. Instead, they are probably a derived group within the Crabronidae. In conflict to the majority of current morphological studies, the molecular analyses provide no support for the Crabronidae and Bembicinae. Some molecular analyses imply a close relationship between Philanthinae and bees

    The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders) are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities.</p> <p>Results</p> <p>The first complete mitochondrial DNA genome of a member of the Ricinulei, <it>Pseudocellus pearsei </it>(Arachnida: Ricinulei) was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (<it>trnW</it>, <it>trnY</it>, <it>trnN</it>, <it>trnL</it>(CUN), <it>trnV</it>) show different relative positions compared to other Chelicerata (e.g. <it>Limulus polyphemus</it>, <it>Ixodes </it>spp.). We propose that two events led to this derived gene order: (1) a tandem duplication followed by random deletion and (2) an independent translocation of <it>trnN</it>. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference) using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved.</p> <p>Conclusion</p> <p>Phylogenetic analyses (ML, MP, BI) of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of intraordinal relationships, e.g. in Acari.</p

    Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida.</p> <p>Results</p> <p>The first complete mitochondrial genome of a member of Sipuncula, <it>Sipunculus nudus</it>, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida <it>sensu lato</it>, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida.</p> <p>Conclusion</p> <p>The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.</p

    Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The new animal phylogeny established several taxa which were not identified by morphological analyses, most prominently the Ecdysozoa (arthropods, roundworms, priapulids and others) and Lophotrochozoa (molluscs, annelids, brachiopods and others). Lophotrochozoan interrelationships are under discussion, e.g. regarding the position of Nemertea (ribbon worms), which were discussed to be sister group to e.g. Mollusca, Brachiozoa or Platyhelminthes. Mitochondrial genomes contributed well with sequence data and gene order characters to the deep metazoan phylogeny debate.</p> <p>Results</p> <p>In this study we present the first complete mitochondrial genome record for a member of the Nemertea, <it>Lineus viridis</it>. Except two <it>trnP </it>and <it>trnT</it>, all genes are located on the same strand. While gene order is most similar to that of the brachiopod <it>Terebratulina retusa</it>, sequence based analyses of mitochondrial genes place nemerteans close to molluscs, phoronids and entoprocts without clear preference for one of these taxa as sister group.</p> <p>Conclusion</p> <p>Almost all recent analyses with large datasets show good support for a taxon comprising Annelida, Mollusca, Brachiopoda, Phoronida and Nemertea. But the relationships among these taxa vary between different studies. The analysis of gene order differences gives evidence for a multiple independent occurrence of a large inversion in the mitochondrial genome of Lophotrochozoa and a re-inversion of the same part in gastropods. We hypothesize that some regions of the genome have a higher chance for intramolecular recombination than others and gene order data have to be analysed carefully to detect convergent rearrangement events.</p

    On the phylogenetic position of Myzostomida: can 77 genes get it wrong?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, phylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa.</p> <p>Results</p> <p>Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data.</p> <p>Conclusion</p> <p>We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.</p

    The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acoels are simply organized unsegmented worms, lacking hindgut and anus. Several publications over recent years challenge the long-held view that acoels are early offshoots of the flatworms. Instead a basal position as sister group to all other bilaterian animals was suggested, mainly based on molecular evidence. This led to the view that features of acoels might reflect those of the last common ancestor of Bilateria, and resulted in several evo-devo studies trying to interpret bilaterian evolution using acoels as a proxy model for the "Urbilateria".</p> <p>Results</p> <p>We describe the first complete mitochondrial genome sequence of a member of the Acoela, <it>Symsagittifera roscoffensis</it>. Gene content and circular organization of the mitochondrial genome does not significantly differ from other bilaterian animals. However, gene order shows no similarity to any other mitochondrial genome within the Metazoa. Phylogenetic analyses of concatenated alignments of amino acid sequences from protein coding genes support a position of Acoela and Nemertodermatida as the sister group to all other Bilateria. Our data provided no support for a sister group relationship between Xenoturbellida and Acoela or Acoelomorpha. The phylogenetic position of <it>Xenoturbella bocki </it>as sister group to or part of the deuterostomes was also unstable.</p> <p>Conclusions</p> <p>Our phylogenetic analysis supports the view that acoels and nemertodermatids are the earliest divergent extant lineage of Bilateria. As such they remain a valid source for seeking primitive characters present in the last common ancestor of Bilateria. Gene order of mitochondrial genomes seems to be very variable among Acoela and Nemertodermatida and the groundplan for the metazoan mitochondrial genome remains elusive. More data are needed to interpret mitochondrial genome evolution at the base of Bilateria.</p

    Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species

    Full text link
    The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA–BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations

    Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species.

    Get PDF
    UNLABELLED The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11692-023-09612-5
    • 

    corecore